

streamsx.testing package

Overview

Testing for IBM Streams SPL and Python applications.

unittest integration

	Test streams by placing conditions on streams in an application, such as this stream must receive at least 100 tuples.

	Allow a test to be easily executed in different environments, such as standalone and against the public cloud service.

nose integration

	Plugins to allow configuration changes when running tests using nosetests without modifying the test code.

	streamsx.testing

	IBM Streams application testing.

	streamsx.testing.nose

	Nose plugins for IBM Streams application testing.

Indices and tables

	Index

	Module Index

	Search Page

streamsx.testing

IBM Streams application testing.

Overview

Testing of an application, sub-graph or operator is performed
by building a Python topology that invokes the element under test
in a standard Python unittest. The element under test can be
a SPL application, sub-graph, operator or a Python application,
sub-graph or single transformation. See Testing overview.

Testing of SPL functions is performed by declaring series of
input data and expected output. See SPL function testing overview.

Python is a natural choice for testing of SPL applications as
tests can be written simply and executed immediately without
a compilation step. By use of the standard Python unittest existing
tools such as nosetets can be used to run tests, produce reports
and integrate with continuous integration tools such as Jenkins.

Testing overview

Allows testing of a streaming application by creation conditions
on streams that are expected to become valid during the processing.
Tester is designed to be used with Python’s unittest module.

A complete application may be tested or fragments of it, for example a sub-graph can be tested
in isolation that takes input data and scores it using a model.

Supports execution of the application on STREAMING_ANALYTICS_SERVICE,
DISTRIBUTED or STANDALONE.

A Tester instance is created and associated with the Topology to be tested.
Conditions are then created against streams, such as a stream must receive 10 tuples using
tuple_count().

Here is a simple example that tests a filter correctly passes tuples with values greater than 5:

import unittest
from streamsx.testing import Tester
from streamsx.topology.topology import Topology

class TestSimpleFilter(unittest.TestCase):

 def setUp(self):
 # Sets self.test_ctxtype and self.test_config
 Tester.setup_streaming_analytics(self)

 def test_filter(self):
 # Declare the application to be tested
 topology = Topology()
 s = topology.source([5, 7, 2, 4, 9, 3, 8])
 s = s.filter(lambda x : x > 5)

 # Create tester and assign conditions
 tester = Tester(topology)
 tester.contents(s, [7, 9, 8])

 # Submit the application for test
 # If it fails an AssertionError will be raised.
 tester.test(self.test_ctxtype, self.test_config)

A stream may have any number of conditions and any number of streams may be tested.

A local_check() is supported where a method of the
unittest class is executed once the job becomes healthy. This performs
checks from the context of the Python unittest class, such as
checking external effects of the application or using the REST api to
monitor the application.

	A test fails-fast if any of the following occur:

	
	Any condition fails. E.g. a tuple failing a tuple_check().

	The local_check() (if set) raises an error.

	
	The job for the test:

	
	Fails to become healthy.

	Becomes unhealthy during the test run.

	Any processing element (PE) within the job restarts.

A test timeouts if it does not fail but its conditions do not become valid.
The timeout is not fixed as an absolute test run time, but as a time since “progress”
was made. This can allow tests to pass when healthy runs are run in a constrained
environment that slows execution. For example with a tuple count condition of ten,
progress is indicated by tuples arriving on a stream, so that as long as gaps
between tuples are within the timeout period the test remains running until ten tuples appear.

Note

The test timeout value is not configurable.

Note

The submitted job (application under test) has additional elements (streams & operators) inserted to implement the conditions. These are visible through various APIs including the Streams console raw graph view. Such elements are put into the Tester category.

Note

Tester is an import of streamsx.topology.tester.Tester.

SPL function testing overview

SPL functions can tested using FnTester by providing series
of input values and the expected function return values.
Functions under test may be SPL or SPL native functions
(implemented in Java or C++).

	
class streamsx.testing.Tester(topology)

	Testing support for a Topology.

Allows testing of a Topology by creating conditions against the contents
of its streams.

Conditions may be added to a topology at any time before submission.

If a topology is submitted directly to a context then the graph
is not modified. This allows testing code to be inserted while
the topology is being built, but not acted upon unless the topology
is submitted in test mode.

If a topology is submitted through the test method then the topology
may be modified to include operations to ensure the conditions are met.

Warning

For future compatibility applications under test should not include intended failures that cause
a processing element to stop or restart. Thus, currently testing is against expected application behavior.

	Parameters

	topology – Topology to be tested.

	
add_condition(stream, condition)

	Add a condition to a stream.

Conditions are normally added through tuple_count(), contents() or tuple_check().

This allows an additional conditions that are implementations of Condition.

	Parameters

	
	stream (Stream) – Stream to be tested.

	condition (Condition) – Arbitrary condition.

	Returns

	stream

	Return type

	Stream

	
contents(stream, expected, ordered=True)

	Test that a stream contains the expected tuples.

	Parameters

	
	stream (Stream) – Stream to be tested.

	expected (list) – Sequence of expected tuples.

	ordered (bool) – True if the ordering of received tuples must match expected.

	Returns

	stream

	Return type

	Stream

	
eventual_result(stream, checker)

	Test a stream reaches a known result or state.

Creates a test condition that the tuples on a stream
eventually reach a known result or state. Each tuple
on stream results in a call to checker(tuple_).

	The return from checker is handled as:

	
	None - The condition requires more tuples to become valid.

	true value - The condition has become valid.

	false value - The condition has failed. Once a condition has failed it can never become valid.

Thus checker is typically stateful and allows ensuring that
condition becomes valid from a set of input tuples. For example
in a financial application the application under test may need
to achieve a final known balance, but due to timings of windows the
number of tuples required to set the final balance may be variable.

Once the condition becomes valid any false value,
except None, returned by processing of subsequent
tuples will cause the condition to fail.

Returning None effectively never changes the state of the condition.

	Parameters

	
	stream (Stream) – Stream to be tested.

	checker (callable) – Callable that returns evaluates the state of the stream with result to the result.

New in version 1.11.

	
static get_streams_version(test)

	Returns IBM Streams product version string for a test.

Returns the product version corresponding to the test’s setup.
For STANDALONE and DISTRIBUTED the product version
corresponds to the version defined by the environment variable
STREAMS_INSTALL.

	Parameters

	test (unittest.TestCase) – Test case setup to run IBM Streams tests.

	
local_check(callable)

	Perform local check while the application is being tested.

A call to callable is made after the application under test is submitted and becomes healthy.
The check is in the context of the Python runtime executing the unittest case,
typically the callable is a method of the test case.

The application remains running until all the conditions are met
and callable returns. If callable raises an error, typically
through an assertion method from unittest then the test will fail.

Used for testing side effects of the application, typically with STREAMING_ANALYTICS_SERVICE
or DISTRIBUTED. The callable may also use the REST api for context types that support
it to dynamically monitor the running application.

The callable can use submission_result and streams_connection attributes from Tester instance
to interact with the job or the running Streams instance.
These REST binding classes can be obtained as follows:

	Job - tester.submission_result.job

	Instance - tester.submission_result.job.get_instance()

	StreamsConnection - tester.streams_connection

Simple example of checking the job is healthy:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestLocalCheckExample(unittest.TestCase):
 def setUp(self):
 Tester.setup_distributed(self)

 def test_job_is_healthy(self):
 topology = Topology()
 s = topology.source(['Hello', 'World'])

 self.tester = Tester(topology)
 self.tester.tuple_count(s, 2)

 # Add the local check
 self.tester.local_check = self.local_checks

 # Run the test
 self.tester.test(self.test_ctxtype, self.test_config)

 def local_checks(self):
 job = self.tester.submission_result.job
 self.assertEqual('healthy', job.health)

Warning

A local check must not cancel the job (application under test).

Warning

A local check is not supported in standalone mode.

	Parameters

	callable – Callable object.

	
static minimum_streams_version(test, required_version)

	Checks test setup matches a minimum required IBM Streams version.

	Parameters

	
	test (unittest.TestCase) – Test case setup to run IBM Streams tests.

	required_version (str) – VRMF of the minimum version the test requires. Examples are '4.3', 4.2.4.

	Returns

	True if the setup fulfills the minimum required version, false otherwise.

	Return type

	bool

	
static require_streams_version(test, required_version)

	Require a test has minimum IBM Streams version.

Skips the test if the test’s setup is not at the required
minimum IBM Streams version.

	Parameters

	
	test (unittest.TestCase) – Test case setup to run IBM Streams tests.

	required_version (str) – VRMF of the minimum version the test requires. Examples are '4.3', 4.2.4.

	
resets(minimum_resets=10)

	Create a condition that randomly resets consistent regions.
The condition becomes valid when each consistent region in the
application under test has been reset minimum_resets times
by the tester.

The resets are performed at arbitrary intervals scaled to the
period of the region (if it is periodically triggered).

Note

A region is reset by initiating a request though the Job Control Plane. The reset is not driven by any injected failure, such as a PE restart.

	Parameters

	minimum_resets (int) – Minimum number of resets for each region.

New in version 1.11.

	
run_for(duration)

	Run the test for a minimum number of seconds.

Creates a test wide condition that becomes valid when the
application under test has been running for duration seconds.
Maybe be called multiple times, the test will run as long as the maximum value provided.

Can be used to test applications without any externally visible
streams, or streams that do not have testable conditions. For
example a complete application may be tested by runnning it for
for ten minutes and use local_check() to test
any external impacts, such as messages published to a
message queue system.

	Parameters

	duration (float) – Minimum number of seconds the test will run for.

	
static setup_distributed(test, verbose=None)

	Set up a unittest.TestCase to run tests using IBM Streams distributed mode.

Requires a local IBM Streams install define by the STREAMS_INSTALL
environment variable. If STREAMS_INSTALL is not set then the
test is skipped.

The Streams instance to use is defined by the environment variables:

	STREAMS_ZKCONNECT - Zookeeper connection string (optional)

	STREAMS_DOMAIN_ID - Domain identifier

	STREAMS_INSTANCE_ID - Instance identifier

The user used to submit and monitor the job is set by the
optional environment variables:

	STREAMS_USERNAME - User name defaulting to streamsadmin.

	STREAMS_PASSWORD - User password defaulting to passw0rd.

The defaults match the setup for testing on a IBM Streams Quick
Start Edition (QSE) virtual machine.

Warning

streamtool is used to submit the job and requires that streamtool does not prompt for authentication. This is achieved by using streamtool genkey.

See also

Generating authentication keys for IBM Streams [https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html]

Two attributes are set in the test case:

	test_ctxtype - Context type the test will be run in.

	test_config - Test configuration.

	Parameters

	
	test (unittest.TestCase) – Test case to be set up to run tests using Tester

	verbose (bool) – If true then the streamsx.topology.test logger is configured at DEBUG level with output sent to standard error.

Returns: None

	
static setup_standalone(test, verbose=None)

	Set up a unittest.TestCase to run tests using IBM Streams standalone mode.

Requires a local IBM Streams install define by the STREAMS_INSTALL
environment variable. If STREAMS_INSTALL is not set, then the
test is skipped.

A standalone application under test will run until a condition
fails or all the streams are finalized or when the
run_for() time (if set) elapses.
Applications that include infinite streams must include set a
run for time using run_for() to ensure the test completes

Two attributes are set in the test case:

	test_ctxtype - Context type the test will be run in.

	test_config- Test configuration.

	Parameters

	
	test (unittest.TestCase) – Test case to be set up to run tests using Tester

	verbose (bool) – If true then the streamsx.topology.test logger is configured at DEBUG level with output sent to standard error.

Returns: None

	
static setup_streaming_analytics(test, service_name=None, force_remote_build=False, verbose=None)

	Set up a unittest.TestCase to run tests using Streaming Analytics service on IBM Cloud.

The service to use is defined by:

	VCAP_SERVICES environment variable containing streaming_analytics entries.

	service_name which defaults to the value of STREAMING_ANALYTICS_SERVICE_NAME environment variable.

If VCAP_SERVICES is not set or a service name is not defined, then the test is skipped.

Two attributes are set in the test case:

	test_ctxtype - Context type the test will be run in.

	test_config - Test configuration.

	Parameters

	
	test (unittest.TestCase) – Test case to be set up to run tests using Tester

	service_name (str) – Name of Streaming Analytics service to use. Must exist as an
entry in the VCAP services. Defaults to value of STREAMING_ANALYTICS_SERVICE_NAME environment variable.

	force_remote_build (bool) – Force use of the Streaming Analytics build service. If false and STREAMS_INSTALL is set then a local build will be used if the local environment is suitable for the service, otherwise the Streams application bundle is built using the build service.

	verbose (bool) – If true then the streamsx.topology.test logger is configured at DEBUG level with output sent to standard error.

If run with Python 2 the test is skipped, only Python 3.5
is supported with Streaming Analytics service.

Returns: None

	
test(ctxtype, config=None, assert_on_fail=True, username=None, password=None, always_collect_logs=False)

	Test the topology.

Submits the topology for testing and verifies the test conditions are met and the job remained healthy through its execution.

The submitted application (job) is monitored for the test conditions and
will be canceled when all the conditions are valid or at least one failed.
In addition if a local check was specified using local_check() then
that callable must complete before the job is cancelled.

The test passes if all conditions became valid and the local check callable (if present) completed without
raising an error.

The test fails if the job is unhealthy, any condition fails or the local check callable (if present) raised an exception.
In the event that the test fails when submitting to the STREAMING_ANALYTICS_SERVICE context, the application logs are retrieved as
a tar file and are saved to the current working directory. The filesystem path to the application logs is saved in the
tester’s result object under the application_logs key, i.e. tester.result[‘application_logs’]

	Parameters

	
	ctxtype (str) – Context type for submission.

	config – Configuration for submission.

	assert_on_fail (bool) – True to raise an assertion if the test fails, False to return the passed status.

	username (str) – Deprecated

	password (str) – Deprecated

	always_collect_logs (bool) – True to always collect the console log and PE trace files of the test.

	
result

	The result of the test. This can contain exit codes, application log paths, or other relevant test information.

	
submission_result

	Result of the application submission from submit().

	
streams_connection

	Connection object that can be used to interact with the REST API of
the Streaming Analytics service or instance.

	Type

	StreamsConnection

	Returns

	True if test passed, False if test failed if assert_on_fail is False.

	Return type

	bool

Deprecated since version 1.8.3: username and password parameters. When required for
 a distributed test use the environment variables
 STREAMS_USERNAME and STREAMS_PASSWORD to define
 the Streams user.

	
tuple_check(stream, checker)

	Check each tuple on a stream.

For each tuple t on stream checker(t) is called.

If the return evaluates to False then the condition fails.
Once the condition fails it can never become valid.
Otherwise the condition becomes or remains valid. The first
tuple on the stream makes the condition valid if the checker
callable evaluates to True.

The condition can be combined with tuple_count() with
exact=False to test a stream map or filter with random input data.

An example of combining tuple_count and tuple_check to test a filter followed
by a map is working correctly across a random set of values:

def rands():
 r = random.Random()
 while True:
 yield r.random()

class TestFilterMap(unittest.testCase):
Set up omitted

 def test_filter(self):
 # Declare the application to be tested
 topology = Topology()
 r = topology.source(rands())
 r = r.filter(lambda x : x > 0.7)
 r = r.map(lambda x : x + 0.2)

 # Create tester and assign conditions
 tester = Tester(topology)
 # Ensure at least 1000 tuples pass through the filter.
 tester.tuple_count(r, 1000, exact=False)
 tester.tuple_check(r, lambda x : x > 0.9)

 # Submit the application for test
 # If it fails an AssertionError will be raised.
 tester.test(self.test_ctxtype, self.test_config)

	Parameters

	
	stream (Stream) – Stream to be tested.

	checker (callable) – Callable that must evaluate to True for each tuple.

	
tuple_count(stream, count, exact=True)

	Test that a stream contains a number of tuples.

If exact is True, then condition becomes valid when count
tuples are seen on stream during the test. Subsequently if additional
tuples are seen on stream then the condition fails and can never
become valid.

If exact is False, then the condition becomes valid once count
tuples are seen on stream and remains valid regardless of
any additional tuples.

	Parameters

	
	stream (Stream) – Stream to be tested.

	count (int) – Number of tuples expected.

	exact (bool) – True if the stream must contain exactly count
tuples, False if the stream must contain at least count tuples.

	Returns

	stream

	Return type

	Stream

	
class streamsx.testing.FnTester(name)

	SPL function tester.

Creates a holder for an SPL function under test.

	Parameters

	name – SPL namespace qualified name of the function.

Simple examples

Example testing a function with a single parameter (spl.math::abs) with int32 and float64 values:

import unittest
from streamsx.testing import Tester, FnTester

class TestStandardFunctions(unittest.TestCase):

 def setUp(self):
 # Sets self.test_ctxtype and self.test_config
 Tester.setup_standalone(self)

 def test_abs(self):
 # Declare the tester
 tester = FnTester('spl.math::abs')

 # Setup a series of int64 values for testing
 args = [1,2,-3,0,-5]
 tester.series(args, [abs(i) for i in args], name='abs_int64')

 # Setup a series of float64 values for testing
 args = [0.5, 0.0, -4.5]
 tester.series(args, [abs(i) for i in args], name='abs_float64')

 # Execute the test
 tester.test(self)

Note

The function under test and its series are tested using a
generated application run with Tester.

	
series(args, expected, name=None)

	Declare a function test with a series of values.

Each value in args is passed into the function under test
and the result expected to be the corresponding value in expected.

Each value in args is a simple value for
functions that accept a single parameter. Otherwise
each value is a tuple with the number of required parameters.

Each value in expected is a simple value for
functions that return an SPL type that is not an SPL tuple. Otherwise each value is a tuple with the correct number
of values for the returned tuple schema.

Multiple series may be created for a single instance of FnTester,
typically using different data types accepted by the function.

The series tests are not executed until FnTester.test is called.

The series name can aid with diagnostics when debugging tests or
functions to clearly indicate which series is failing.

	Parameters

	
	args (list) – List of values to be passed into the function under test.

	expected (list) – List of expected results.

	name (str) – Name of series. Defaults to a generated name.

	
test(test, assert_on_fail=True, always_collect_logs=False)

	Test the function.

Submits this function for testing and verifies all the series
have the expected results.

The submitted job containing the series tests is monitored and
will be canceled when all the series are valid or at least one failed.

The test passes if all series became valid.

The test fails if the job is unhealthy or any series fails.

In the event that the test fails the application logs are retrieved
(when supported by the Streams instance)
as a tar file and are saved to the current working directory. The filesystem path to the application logs is saved in the
tester’s result object under the application_logs key, i.e. tester.result[‘application_logs’]

The test case test must have been setup with on of
Tester.setup_standalone(),
Tester.setup_distributed() or
Tester.setup_streaming_analytics().

	Parameters

	
	test – Instance of unittest.TestCase running the function series.

	assert_on_fail (bool) – True to raise an assertion if the test fails, False to return the passed status.

	always_collect_logs (bool) – True to always collect the console log and PE trace files of the test.

	Returns

	True if test passed, False if test failed if assert_on_fail is False.

	Return type

	bool

streamsx.testing.nose

Nose plugins for IBM Streams application testing.

Classes

	AddConfigurationPlugin()

	Add arbitrary configuration to a test

	DisableSSLVerifyPlugin()

	Disable SSL certification verification.

	JobConfigPlugin()

	Job configuration plugin.

	SkipStandalonePlugin()

	Skip standalone tests.

	
class streamsx.testing.nose.AddConfigurationPlugin

	Add arbitrary configuration to a test

Enabled with --with-streamsx-add-config.

This plugin adds arbitrary configuration items to a test’s
test_config dictionary by updating with the dictionary value supplied
by the options.

These options must be set when using this plugin.

	--streamsx-test-context CONTEXT - Context that will have its configuration added to. Any test that runs with a different context will not have its

	--streamsx-test-config CODE - Code that is executed using built-in method exec. The execution must set the local variable cfg to a dictionary that will then be used as test.test_config.update(cfg) before the test is run.

Example:

nosetests --with-streamsx-add-config --streamsx-test-context STANDALONE --streamsx-test-config "cfg = {'topology.keepArtifacts':True}"

	
configure(options, conf)

	Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option
for the plugin (self.enableOpt) is true.

	
options(parser, env=environ({'HOSTNAME': 'build-9365248-project-251772-streamsxtesting', 'PYPY_VERSION_35': 'pypy3.5-7.0.0', 'APPDIR': '/app', 'HOME': '/home/docs', 'OLDPWD': '/', 'CONDA_VERSION': '4.6.14', 'READTHEDOCS': 'True', 'READTHEDOCS_PROJECT': 'streamsxtesting', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin:/home/docs/.pyenv/shims:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/docs/.conda/bin:/home/docs/.pyenv/bin', 'LANG': 'C.UTF-8', 'DEBIAN_FRONTEND': 'noninteractive', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin', 'PYTHON_VERSION_35': '3.5.7', 'READTHEDOCS_VERSION': 'pypackage', 'PYTHON_VERSION_27': '2.7.16', 'PYTHON_VERSION_36': '3.6.8', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source', 'PYTHON_VERSION_37': '3.7.3', 'PYENV_ROOT': '/home/docs/.pyenv', 'DOCUTILSCONFIG': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source/docutils.conf'}))

	Register commandline options.

Implement this method for normal options behavior with protection from
OptionConflictErrors. If you override this method and want the default
–with-$name option to be registered, be sure to call super().

	
class streamsx.testing.nose.DisableSSLVerifyPlugin

	Disable SSL certification verification.

Disables SSL certification when running distributed tests.
This is useful when a test instance with a self-signed certificate,
such as the IBM Streams Quick Start edition.

Enabled with --with-streamsx-disable-ssl-verify.

	
configure(options, conf)

	Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option
for the plugin (self.enableOpt) is true.

	
class streamsx.testing.nose.JobConfigPlugin

	Job configuration plugin.

Plugin that modifies the job configuration object for
the application under test.

Enabled with --with-streamsx-jco.

These options are supported:

	--streamsx-jco-default-tag=tag - Sets the resource tag for the default host pool. The default host pool is where transformations/operators with explicit resource tags are assigned to and by default maps to the resource tag application.

	
configure(options, conf)

	Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option
for the plugin (self.enableOpt) is true.

	
options(parser, env=environ({'HOSTNAME': 'build-9365248-project-251772-streamsxtesting', 'PYPY_VERSION_35': 'pypy3.5-7.0.0', 'APPDIR': '/app', 'HOME': '/home/docs', 'OLDPWD': '/', 'CONDA_VERSION': '4.6.14', 'READTHEDOCS': 'True', 'READTHEDOCS_PROJECT': 'streamsxtesting', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin:/home/docs/.pyenv/shims:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/docs/.conda/bin:/home/docs/.pyenv/bin', 'LANG': 'C.UTF-8', 'DEBIAN_FRONTEND': 'noninteractive', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/envs/pypackage/bin', 'PYTHON_VERSION_35': '3.5.7', 'READTHEDOCS_VERSION': 'pypackage', 'PYTHON_VERSION_27': '2.7.16', 'PYTHON_VERSION_36': '3.6.8', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source', 'PYTHON_VERSION_37': '3.7.3', 'PYENV_ROOT': '/home/docs/.pyenv', 'DOCUTILSCONFIG': '/home/docs/checkouts/readthedocs.org/user_builds/streamsxtesting/checkouts/pypackage/docs/source/docutils.conf'}))

	Register commandline options.

Implement this method for normal options behavior with protection from
OptionConflictErrors. If you override this method and want the default
–with-$name option to be registered, be sure to call super().

	
class streamsx.testing.nose.SkipStandalonePlugin

	Skip standalone tests.

Automatically skips any tests that have been configured for
standalone using Tester.setup_standalone().

Enabled with --with-streamsx-skip-standalone.

	
configure(options, conf)

	Configure the plugin and system, based on selected options.

The base plugin class sets the plugin to enabled if the enable option
for the plugin (self.enableOpt) is true.

 Python Module Index

 n |
 s

 		 	

 		
 n	

 	
 	
 streamsx.testing.nose	

 		 	

 		
 s	

 	[image: -]
 	
 streamsx	

 	
 	
 streamsx.testing	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | J
 | L
 | M
 | O
 | R
 | S
 | T

A

 	
 	add_condition() (streamsx.testing.Tester method)

 	
 	AddConfigurationPlugin (class in streamsx.testing.nose)

C

 	
 	configure() (streamsx.testing.nose.AddConfigurationPlugin method)

 	(streamsx.testing.nose.DisableSSLVerifyPlugin method)

 	(streamsx.testing.nose.JobConfigPlugin method)

 	(streamsx.testing.nose.SkipStandalonePlugin method)

 	
 	contents() (streamsx.testing.Tester method)

D

 	
 	DisableSSLVerifyPlugin (class in streamsx.testing.nose)

E

 	
 	eventual_result() (streamsx.testing.Tester method)

F

 	
 	FnTester (class in streamsx.testing)

G

 	
 	get_streams_version() (streamsx.testing.Tester static method)

J

 	
 	JobConfigPlugin (class in streamsx.testing.nose)

L

 	
 	local_check() (streamsx.testing.Tester method)

M

 	
 	minimum_streams_version() (streamsx.testing.Tester static method)

O

 	
 	options() (streamsx.testing.nose.AddConfigurationPlugin method)

 	(streamsx.testing.nose.JobConfigPlugin method)

R

 	
 	require_streams_version() (streamsx.testing.Tester static method)

 	resets() (streamsx.testing.Tester method)

 	
 	result (streamsx.testing.Tester attribute)

 	run_for() (streamsx.testing.Tester method)

S

 	
 	series() (streamsx.testing.FnTester method)

 	setup_distributed() (streamsx.testing.Tester static method)

 	setup_standalone() (streamsx.testing.Tester static method)

 	setup_streaming_analytics() (streamsx.testing.Tester static method)

 	
 	SkipStandalonePlugin (class in streamsx.testing.nose)

 	streams_connection (streamsx.testing.Tester attribute)

 	streamsx.testing (module)

 	streamsx.testing.nose (module)

 	submission_result (streamsx.testing.Tester attribute)

T

 	
 	test() (streamsx.testing.FnTester method)

 	(streamsx.testing.Tester method)

 	
 	Tester (class in streamsx.testing)

 	tuple_check() (streamsx.testing.Tester method)

 	tuple_count() (streamsx.testing.Tester method)

 nav.xhtml

 Table of Contents

 		
 streamsx.testing package

 		
 streamsx.testing

 		
 Overview

 		
 Testing overview

 		
 SPL function testing overview

 		
 streamsx.testing.nose

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

